:py:mod:`dissect.btrfs.c_btrfs` =============================== .. py:module:: dissect.btrfs.c_btrfs Module Contents --------------- .. py:data:: btrfs_def :value: Multiline-String .. raw:: html
Show Value .. code-block:: python """ #define BTRFS_SUPER_INFO_OFFSET 0x00010000 /* ASCII for _BHRfS_M, no terminating nul */ #define BTRFS_MAGIC 0x4D5F53665248425F #define BTRFS_MAX_LEVEL 8 /* * We can actually store much bigger names, but lets not confuse the rest of * linux. */ #define BTRFS_NAME_LEN 255 /* * Theoretical limit is larger, but we keep this down to a sane value. That * should limit greatly the possibility of collisions on inode ref items. */ #define BTRFS_LINK_MAX 65535 /* holds pointers to all of the tree roots */ #define BTRFS_ROOT_TREE_OBJECTID 1 /* stores information about which extents are in use, and reference counts */ #define BTRFS_EXTENT_TREE_OBJECTID 2 /* * chunk tree stores translations from logical -> physical block numbering * the super block points to the chunk tree */ #define BTRFS_CHUNK_TREE_OBJECTID 3 /* * stores information about which areas of a given device are in use. * one per device. The tree of tree roots points to the device tree */ #define BTRFS_DEV_TREE_OBJECTID 4 /* one per subvolume, storing files and directories */ #define BTRFS_FS_TREE_OBJECTID 5 /* directory objectid inside the root tree */ #define BTRFS_ROOT_TREE_DIR_OBJECTID 6 /* holds checksums of all the data extents */ #define BTRFS_CSUM_TREE_OBJECTID 7 /* holds quota configuration and tracking */ #define BTRFS_QUOTA_TREE_OBJECTID 8 /* for storing items that use the BTRFS_UUID_KEY* types */ #define BTRFS_UUID_TREE_OBJECTID 9 /* tracks free space in block groups. */ #define BTRFS_FREE_SPACE_TREE_OBJECTID 10 /* Holds the block group items for extent tree v2. */ #define BTRFS_BLOCK_GROUP_TREE_OBJECTID 11 /* device stats in the device tree */ #define BTRFS_DEV_STATS_OBJECTID 0 /* for storing balance parameters in the root tree */ #define BTRFS_BALANCE_OBJECTID -4 /* orphan objectid for tracking unlinked/truncated files */ #define BTRFS_ORPHAN_OBJECTID -5 /* does write ahead logging to speed up fsyncs */ #define BTRFS_TREE_LOG_OBJECTID -6 #define BTRFS_TREE_LOG_FIXUP_OBJECTID -7 /* for space balancing */ #define BTRFS_TREE_RELOC_OBJECTID -8 #define BTRFS_DATA_RELOC_TREE_OBJECTID -9 /* * extent checksums all have this objectid * this allows them to share the logging tree * for fsyncs */ #define BTRFS_EXTENT_CSUM_OBJECTID -10 /* For storing free space cache */ #define BTRFS_FREE_SPACE_OBJECTID -11 /* * The inode number assigned to the special inode for storing * free ino cache */ #define BTRFS_FREE_INO_OBJECTID -12 /* dummy objectid represents multiple objectids */ #define BTRFS_MULTIPLE_OBJECTIDS -255 /* * All files have objectids in this range. */ #define BTRFS_FIRST_FREE_OBJECTID 256 #define BTRFS_LAST_FREE_OBJECTID -256 #define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256 /* * the device items go into the chunk tree. The key is in the form * [ 1 BTRFS_DEV_ITEM_KEY device_id ] */ #define BTRFS_DEV_ITEMS_OBJECTID 1 #define BTRFS_BTREE_INODE_OBJECTID 1 #define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2 #define BTRFS_DEV_REPLACE_DEVID 0 /* * inode items have the data typically returned from stat and store other * info about object characteristics. There is one for every file and dir in * the FS */ #define BTRFS_INODE_ITEM_KEY 1 #define BTRFS_INODE_REF_KEY 12 #define BTRFS_INODE_EXTREF_KEY 13 #define BTRFS_XATTR_ITEM_KEY 24 /* * fs verity items are stored under two different key types on disk. * The descriptor items: * [ inode objectid, BTRFS_VERITY_DESC_ITEM_KEY, offset ] * * At offset 0, we store a btrfs_verity_descriptor_item which tracks the size * of the descriptor item and some extra data for encryption. * Starting at offset 1, these hold the generic fs verity descriptor. The * latter are opaque to btrfs, we just read and write them as a blob for the * higher level verity code. The most common descriptor size is 256 bytes. * * The merkle tree items: * [ inode objectid, BTRFS_VERITY_MERKLE_ITEM_KEY, offset ] * * These also start at offset 0, and correspond to the merkle tree bytes. When * fsverity asks for page 0 of the merkle tree, we pull up one page starting at * offset 0 for this key type. These are also opaque to btrfs, we're blindly * storing whatever fsverity sends down. */ #define BTRFS_VERITY_DESC_ITEM_KEY 36 #define BTRFS_VERITY_MERKLE_ITEM_KEY 37 #define BTRFS_ORPHAN_ITEM_KEY 48 /* reserve 2-15 close to the inode for later flexibility */ /* * dir items are the name -> inode pointers in a directory. There is one * for every name in a directory. BTRFS_DIR_LOG_ITEM_KEY is no longer used * but it's still defined here for documentation purposes and to help avoid * having its numerical value reused in the future. */ #define BTRFS_DIR_LOG_ITEM_KEY 60 #define BTRFS_DIR_LOG_INDEX_KEY 72 #define BTRFS_DIR_ITEM_KEY 84 #define BTRFS_DIR_INDEX_KEY 96 /* * extent data is for file data */ #define BTRFS_EXTENT_DATA_KEY 108 /* * extent csums are stored in a separate tree and hold csums for * an entire extent on disk. */ #define BTRFS_EXTENT_CSUM_KEY 128 /* * root items point to tree roots. They are typically in the root * tree used by the super block to find all the other trees */ #define BTRFS_ROOT_ITEM_KEY 132 /* * root backrefs tie subvols and snapshots to the directory entries that * reference them */ #define BTRFS_ROOT_BACKREF_KEY 144 /* * root refs make a fast index for listing all of the snapshots and * subvolumes referenced by a given root. They point directly to the * directory item in the root that references the subvol */ #define BTRFS_ROOT_REF_KEY 156 /* * extent items are in the extent map tree. These record which blocks * are used, and how many references there are to each block */ #define BTRFS_EXTENT_ITEM_KEY 168 /* * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know * the length, so we save the level in key->offset instead of the length. */ #define BTRFS_METADATA_ITEM_KEY 169 #define BTRFS_TREE_BLOCK_REF_KEY 176 #define BTRFS_EXTENT_DATA_REF_KEY 178 #define BTRFS_EXTENT_REF_V0_KEY 180 #define BTRFS_SHARED_BLOCK_REF_KEY 182 #define BTRFS_SHARED_DATA_REF_KEY 184 /* * block groups give us hints into the extent allocation trees. Which * blocks are free etc etc */ #define BTRFS_BLOCK_GROUP_ITEM_KEY 192 /* * Every block group is represented in the free space tree by a free space info * item, which stores some accounting information. It is keyed on * (block_group_start, FREE_SPACE_INFO, block_group_length). */ #define BTRFS_FREE_SPACE_INFO_KEY 198 /* * A free space extent tracks an extent of space that is free in a block group. * It is keyed on (start, FREE_SPACE_EXTENT, length). */ #define BTRFS_FREE_SPACE_EXTENT_KEY 199 /* * When a block group becomes very fragmented, we convert it to use bitmaps * instead of extents. A free space bitmap is keyed on * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with * (length / sectorsize) bits. */ #define BTRFS_FREE_SPACE_BITMAP_KEY 200 #define BTRFS_DEV_EXTENT_KEY 204 #define BTRFS_DEV_ITEM_KEY 216 #define BTRFS_CHUNK_ITEM_KEY 228 /* * Records the overall state of the qgroups. * There's only one instance of this key present, * (0, BTRFS_QGROUP_STATUS_KEY, 0) */ #define BTRFS_QGROUP_STATUS_KEY 240 /* * Records the currently used space of the qgroup. * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid). */ #define BTRFS_QGROUP_INFO_KEY 242 /* * Contains the user configured limits for the qgroup. * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid). */ #define BTRFS_QGROUP_LIMIT_KEY 244 /* * Records the child-parent relationship of qgroups. For * each relation, 2 keys are present: * (childid, BTRFS_QGROUP_RELATION_KEY, parentid) * (parentid, BTRFS_QGROUP_RELATION_KEY, childid) */ #define BTRFS_QGROUP_RELATION_KEY 246 /* * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY. */ #define BTRFS_BALANCE_ITEM_KEY 248 /* * The key type for tree items that are stored persistently, but do not need to * exist for extended period of time. The items can exist in any tree. * * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data] * * Existing items: * * - balance status item * (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0) */ #define BTRFS_TEMPORARY_ITEM_KEY 248 /* * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY */ #define BTRFS_DEV_STATS_KEY 249 /* * The key type for tree items that are stored persistently and usually exist * for a long period, eg. filesystem lifetime. The item kinds can be status * information, stats or preference values. The item can exist in any tree. * * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data] * * Existing items: * * - device statistics, store IO stats in the device tree, one key for all * stats * (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0) */ #define BTRFS_PERSISTENT_ITEM_KEY 249 /* * Persistently stores the device replace state in the device tree. * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0). */ #define BTRFS_DEV_REPLACE_KEY 250 /* * Stores items that allow to quickly map UUIDs to something else. * These items are part of the filesystem UUID tree. * The key is built like this: * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits). */ #define BTRFS_UUID_KEY_SUBVOL 251 /* for UUIDs assigned to subvols */ #define BTRFS_UUID_KEY_RECEIVED_SUBVOL 252 /* for UUIDs assigned to received subvols */ /* * string items are for debugging. They just store a short string of * data in the FS */ #define BTRFS_STRING_ITEM_KEY 253 /* Maximum metadata block size (nodesize) */ #define BTRFS_MAX_METADATA_BLOCKSIZE 65536 /* 32 bytes in various csum fields */ #define BTRFS_CSUM_SIZE 32 /* * flags definitions for directory entry item type * * Used by: * struct btrfs_dir_item.type * * Values 0..7 must match common file type values in fs_types.h. */ #define BTRFS_FT_UNKNOWN 0 #define BTRFS_FT_REG_FILE 1 #define BTRFS_FT_DIR 2 #define BTRFS_FT_CHRDEV 3 #define BTRFS_FT_BLKDEV 4 #define BTRFS_FT_FIFO 5 #define BTRFS_FT_SOCK 6 #define BTRFS_FT_SYMLINK 7 #define BTRFS_FT_XATTR 8 #define BTRFS_FT_MAX 9 /* Directory contains encrypted data */ #define BTRFS_FT_ENCRYPTED 0x80 /* * Inode flags */ #define BTRFS_INODE_NODATASUM (1 << 0) #define BTRFS_INODE_NODATACOW (1 << 1) #define BTRFS_INODE_READONLY (1 << 2) #define BTRFS_INODE_NOCOMPRESS (1 << 3) #define BTRFS_INODE_PREALLOC (1 << 4) #define BTRFS_INODE_SYNC (1 << 5) #define BTRFS_INODE_IMMUTABLE (1 << 6) #define BTRFS_INODE_APPEND (1 << 7) #define BTRFS_INODE_NODUMP (1 << 8) #define BTRFS_INODE_NOATIME (1 << 9) #define BTRFS_INODE_DIRSYNC (1 << 10) #define BTRFS_INODE_COMPRESS (1 << 11) #define BTRFS_INODE_ROOT_ITEM_INIT (1 << 31) #define BTRFS_VOL_NAME_MAX 255 #define BTRFS_LABEL_SIZE 256 #define BTRFS_FSID_SIZE 16 #define BTRFS_UUID_SIZE 16 /* different types of block groups (and chunks) */ flag BTRFS_BLOCK_GROUP : uint64 { DATA = 0x0001 SYSTEM = 0x0002 METADATA = 0x0004 RAID0 = 0x0008 RAID1 = 0x0010 DUP = 0x0020 RAID10 = 0x0040 RAID5 = 0x0080 RAID6 = 0x0100 RAID1C3 = 0x0200 RAID1C4 = 0x0400 }; /* * The key defines the order in the tree, and so it also defines (optimal) * block layout. * * objectid corresponds to the inode number. * * type tells us things about the object, and is a kind of stream selector. * so for a given inode, keys with type of 1 might refer to the inode data, * type of 2 may point to file data in the btree and type == 3 may point to * extents. * * offset is the starting byte offset for this key in the stream. * * btrfs_disk_key is in disk byte order. struct btrfs_key is always * in cpu native order. Otherwise they are identical and their sizes * should be the same (ie both packed) */ struct btrfs_disk_key { uint64 objectid; uint8 type; uint64 offset; }; /* * Every tree block (leaf or node) starts with this header. */ struct btrfs_header { /* These first four must match the super block */ char csum[BTRFS_CSUM_SIZE]; /* FS specific uuid */ char fsid[BTRFS_FSID_SIZE]; /* Which block this node is supposed to live in */ uint64 bytenr; uint64 flags; /* Allowed to be different from the super from here on down */ char chunk_tree_uuid[BTRFS_UUID_SIZE]; uint64 generation; uint64 owner; uint32 nritems; uint8 level; }; /* * This is a very generous portion of the super block, giving us room to * translate 14 chunks with 3 stripes each. */ #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048 /* * Just in case we somehow lose the roots and are not able to mount, we store * an array of the roots from previous transactions in the super. */ #define BTRFS_NUM_BACKUP_ROOTS 4 struct btrfs_root_backup { uint64 tree_root; uint64 tree_root_gen; uint64 chunk_root; uint64 chunk_root_gen; uint64 extent_root; uint64 extent_root_gen; uint64 fs_root; uint64 fs_root_gen; uint64 dev_root; uint64 dev_root_gen; uint64 csum_root; uint64 csum_root_gen; uint64 total_bytes; uint64 bytes_used; uint64 num_devices; /* future */ uint64 unused_64[4]; uint8 tree_root_level; uint8 chunk_root_level; uint8 extent_root_level; uint8 fs_root_level; uint8 dev_root_level; uint8 csum_root_level; /* future and to align */ char unused_8[10]; }; /* * A leaf is full of items. offset and size tell us where to find the item in * the leaf (relative to the start of the data area) */ struct btrfs_item { struct btrfs_disk_key key; uint32 offset; uint32 size; }; /* * Leaves have an item area and a data area: * [item0, item1....itemN] [free space] [dataN...data1, data0] * * The data is separate from the items to get the keys closer together during * searches. */ struct btrfs_leaf { struct btrfs_header header; struct btrfs_item items[]; }; /* * All non-leaf blocks are nodes, they hold only keys and pointers to other * blocks. */ struct btrfs_key_ptr { struct btrfs_disk_key key; uint64 blockptr; uint64 generation; }; struct btrfs_node { struct btrfs_header header; struct btrfs_key_ptr ptrs[]; }; struct btrfs_dev_item { /* the internal btrfs device id */ uint64 devid; /* size of the device */ uint64 total_bytes; /* bytes used */ uint64 bytes_used; /* optimal io alignment for this device */ uint32 io_align; /* optimal io width for this device */ uint32 io_width; /* minimal io size for this device */ uint32 sector_size; /* type and info about this device */ uint64 type; /* expected generation for this device */ uint64 generation; /* * starting byte of this partition on the device, * to allow for stripe alignment in the future */ uint64 start_offset; /* grouping information for allocation decisions */ uint32 dev_group; /* seek speed 0-100 where 100 is fastest */ uint8 seek_speed; /* bandwidth 0-100 where 100 is fastest */ uint8 bandwidth; /* btrfs generated uuid for this device */ char uuid[BTRFS_UUID_SIZE]; /* uuid of FS who owns this device */ char fsid[BTRFS_UUID_SIZE]; }; struct btrfs_stripe { uint64 devid; uint64 offset; char dev_uuid[BTRFS_UUID_SIZE]; }; struct btrfs_chunk { /* size of this chunk in bytes */ uint64 length; /* objectid of the root referencing this chunk */ uint64 owner; uint64 stripe_len; BTRFS_BLOCK_GROUP type; /* optimal io alignment for this chunk */ uint32 io_align; /* optimal io width for this chunk */ uint32 io_width; /* minimal io size for this chunk */ uint32 sector_size; /* 2^16 stripes is quite a lot, a second limit is the size of a single * item in the btree */ uint16 num_stripes; /* sub stripes only matter for raid10 */ uint16 sub_stripes; struct btrfs_stripe stripe[num_stripes]; /* additional stripes go here */ }; /* * The super block basically lists the main trees of the FS. */ struct btrfs_super_block { /* The first 4 fields must match struct btrfs_header */ char csum[BTRFS_CSUM_SIZE]; /* FS specific UUID, visible to user */ char fsid[BTRFS_FSID_SIZE]; /* This block number */ uint64 bytenr; uint64 flags; /* Allowed to be different from the btrfs_header from here own down */ uint64 magic; uint64 generation; uint64 root; uint64 chunk_root; uint64 log_root; /* * This member has never been utilized since the very beginning, thus * it's always 0 regardless of kernel version. We always use * generation + 1 to read log tree root. So here we mark it deprecated. */ uint64 __unused_log_root_transid; uint64 total_bytes; uint64 bytes_used; uint64 root_dir_objectid; uint64 num_devices; uint32 sectorsize; uint32 nodesize; uint32 __unused_leafsize; uint32 stripesize; uint32 sys_chunk_array_size; uint64 chunk_root_generation; uint64 compat_flags; uint64 compat_ro_flags; uint64 incompat_flags; uint16 csum_type; uint8 root_level; uint8 chunk_root_level; uint8 log_root_level; struct btrfs_dev_item dev_item; char label[BTRFS_LABEL_SIZE]; uint64 cache_generation; uint64 uuid_tree_generation; /* The UUID written into btree blocks */ char metadata_uuid[BTRFS_FSID_SIZE]; uint64 nr_global_roots; /* Future expansion */ uint64 reserved[27]; char sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE]; struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS]; /* Padded to 4096 bytes */ char padding[565]; }; struct btrfs_inode_ref { uint64 index; uint16 name_len; char name[name_len]; }; struct btrfs_inode_extref { uint64 parent_objectid; uint64 index; uint16 name_len; char name[name_len]; }; struct btrfs_timespec { uint64 sec; uint32 nsec; }; struct btrfs_inode_item { /* nfs style generation number */ uint64 generation; /* transid that last touched this inode */ uint64 transid; uint64 size; uint64 nbytes; uint64 block_group; uint32 nlink; uint32 uid; uint32 gid; uint32 mode; uint64 rdev; uint64 flags; /* modification sequence number for NFS */ uint64 sequence; /* * a little future expansion, for more than this we can * just grow the inode item and version it */ uint64 reserved[4]; struct btrfs_timespec atime; struct btrfs_timespec ctime; struct btrfs_timespec mtime; struct btrfs_timespec otime; }; struct btrfs_dir_item { struct btrfs_disk_key location; uint64 transid; uint16 data_len; uint16 name_len; uint8 type; char name[name_len]; char data[data_len]; }; struct btrfs_root_item { struct btrfs_inode_item inode; uint64 generation; uint64 root_dirid; uint64 bytenr; uint64 byte_limit; uint64 bytes_used; uint64 last_snapshot; uint64 flags; uint32 refs; struct btrfs_disk_key drop_progress; uint8 drop_level; uint8 level; /* * The following fields appear after subvol_uuids+subvol_times * were introduced. */ /* * This generation number is used to test if the new fields are valid * and up to date while reading the root item. Every time the root item * is written out, the "generation" field is copied into this field. If * anyone ever mounted the fs with an older kernel, we will have * mismatching generation values here and thus must invalidate the * new fields. See btrfs_update_root and btrfs_find_last_root for * details. * the offset of generation_v2 is also used as the start for the memset * when invalidating the fields. */ uint64 generation_v2; char uuid[BTRFS_UUID_SIZE]; char parent_uuid[BTRFS_UUID_SIZE]; char received_uuid[BTRFS_UUID_SIZE]; uint64 ctransid; /* updated when an inode changes */ uint64 otransid; /* trans when created */ uint64 stransid; /* trans when sent. non-zero for received subvol */ uint64 rtransid; /* trans when received. non-zero for received subvol */ struct btrfs_timespec ctime; struct btrfs_timespec otime; struct btrfs_timespec stime; struct btrfs_timespec rtime; uint64 reserved[8]; /* for future */ }; /* * this is used for both forward and backward root refs */ struct btrfs_root_ref { uint64 dirid; uint64 sequence; uint16 name_len; char name[name_len]; }; enum { BTRFS_FILE_EXTENT_INLINE = 0, BTRFS_FILE_EXTENT_REG = 1, BTRFS_FILE_EXTENT_PREALLOC = 2, BTRFS_NR_FILE_EXTENT_TYPES = 3, }; enum { BTRFS_COMPRESS_NONE = 0, BTRFS_COMPRESS_ZLIB = 1, BTRFS_COMPRESS_LZO = 2, BTRFS_COMPRESS_ZSTD = 3, BTRFS_NR_COMPRESS_TYPES = 4, }; struct btrfs_file_extent_item_inline { /* * transaction id that created this extent */ uint64 generation; /* * max number of bytes to hold this extent in ram * when we split a compressed extent we can't know how big * each of the resulting pieces will be. So, this is * an upper limit on the size of the extent in ram instead of * an exact limit. */ uint64 ram_bytes; /* * 32 bits for the various ways we might encode the data, * including compression and encryption. If any of these * are set to something a given disk format doesn't understand * it is treated like an incompat flag for reading and writing, * but not for stat. */ uint8 compression; uint8 encryption; uint16 other_encoding; /* spare for later use */ /* are we inline data or a real extent? */ uint8 type; }; struct btrfs_file_extent_item_reg { /* * transaction id that created this extent */ uint64 generation; /* * max number of bytes to hold this extent in ram * when we split a compressed extent we can't know how big * each of the resulting pieces will be. So, this is * an upper limit on the size of the extent in ram instead of * an exact limit. */ uint64 ram_bytes; /* * 32 bits for the various ways we might encode the data, * including compression and encryption. If any of these * are set to something a given disk format doesn't understand * it is treated like an incompat flag for reading and writing, * but not for stat. */ uint8 compression; uint8 encryption; uint16 other_encoding; /* spare for later use */ /* are we inline data or a real extent? */ uint8 type; /* * disk space consumed by the extent, checksum blocks are included * in these numbers * * At this offset in the structure, the inline extent data start. */ uint64 disk_bytenr; uint64 disk_num_bytes; /* * the logical offset in file blocks (no csums) * this extent record is for. This allows a file extent to point * into the middle of an existing extent on disk, sharing it * between two snapshots (useful if some bytes in the middle of the * extent have changed */ uint64 offset; /* * the logical number of file blocks (no csums included). This * always reflects the size uncompressed and without encoding. */ uint64 num_bytes; }; """ .. raw:: html
.. py:data:: c_btrfs .. py:data:: BTRFS_BLOCK_GROUP .. py:data:: BTRFS_BLOCK_GROUP_TYPE_MASK .. py:data:: BTRFS_BLOCK_GROUP_TYPE_MASK .. py:data:: BTRFS_BLOCK_GROUP_PROFILE_MASK .. py:data:: BTRFS_BLOCK_GROUP_RAID56_MASK .. py:data:: BTRFS_BLOCK_GROUP_RAID1_MASK .. py:data:: BTRFS_BLOCK_GROUP_STRIPE_MASK .. py:data:: FT_MAP .. py:data:: BTRFS_RAID_ATTRIBUTES